Abstract
Uzbekistan, one of the world’s largest cotton producers, is rapidly embracing automation to modernize its harvesting processes. Traditional manual labor in cotton picking has long been a challenge due to labor shortages, inefficiencies, and quality control issues. With recent advancements in artificial intelligence (AI), cotton picking machines are now equipped with intelligent vision systems, adaptive path planning, and autonomous control technologies. This article reviews Uzbekistan’s experience with AI-enabled cotton pickers, highlighting technical developments, field performance, operational challenges, and economic implications. Results from regional field trials demonstrate significant gains in productivity, reduction in crop loss, and improved cotton quality.
References
Zhang, H., Liu, Y., & Gao, W. (2022). Machine vision and AI for automated crop harvesting: A review. Computers and Electronics in Agriculture, 198, 107027. https://doi.org/10.1016/j.compag.2022.107027
Tashkent Cotton Research Institute. (2023). Pilot Program Report on AI-Integrated Harvesters. Retrieved from https://cottoninstitute.uz/reports/ai-harvesting2023.pdf
John Deere Uzbekistan. (2022). Technical Specifications and AI Modules in Cotton Harvesters. Retrieved from https://johndeere.uz/products/cotton-harvesters/ai-modules
Khudaykulov, R., & Mamatkulov, S. (2023). Cost-benefit analysis of AI automation in cotton production. Journal of Central Asian Agriculture, 17(2), 144–159.
OECD. (2021). Mechanization and agricultural productivity in Uzbekistan: Status and prospects. Retrieved from https://www.oecd.org/agriculture/mechanization-uzbekistan.pdf
Yuldashev, B., & Karimov, A. (2024). Challenges in integrating AI in field agriculture: Uzbekistan case study. AgriTech Advances, 9(1), 51–62.
Soliyev, B. (2023). Python-Powered E-Commerce Arrangements in Uzbekistan. In Conference on Digital Innovation:" Modern Problems and Solutions".-2023.
Mamatovich, Z. R., Nabijonovich, S. B., & Qakhramonovna, E. Z. (2024). Enhancing Clarity with Techniques for Recognizing Blurred Objects in Low Quality Images Using Python. Al-Farg’oniy avlodlari, (2), 336-340.
Soliev, B. N., & Odilov, A. (2023). Leveraging Python for Enhanced Excel Functionality: A Practical Exploration. Al-Farg’oniy avlodlari, 1(4), 267-271.
Nabijonovich, S. B., & Ahror, K. (2023). Unveiling the future of data extraction using python and AI for video-based information recognition. American Journal of Technology and Applied Sciences, 17, 26-32.
Soliyev, B. (2023). Python's Part in Revolutionizing E-Commerce in Uzbekistan. In Conference on Digital Innovation:" Modern Problems and Solutions".-2023.
Soliyev, B. (2023). Python-Powered E-Commerce Arrangements in Uzbekistan. In Conference on Digital Innovation:" Modern Problems and Solutions".-2023.
Nabijonovich, S. B., & Muhammadyo'ldoshali, A. (2024). Empowering Patient Diagnosis with Advanced Software in Healthcare. Miasto Przyszlosci.-2024.
Nabijonovich, S. B. (2024). Real-Time Moving Object Detection from Video Streams in Python: Techniques and Implementation. Al-Farg’oniy avlodlari, (2), 330-335.
Зулунов, Р. М., & Солиев, Б. Н. (2023). Использование Python для искусственного интеллекта и машинного обучения. Al-Farg’oniy avlodlari, 1(3), 18-24.